Learning from ICD-10 to Prepare for ICD-11:

Literature Review on the Impact of the Transition to ICD-10 and ICD-10-CM/PCS

Sheila V. Kusnoor, PhD; Mallory N. Blasingame, MA; Annette M. Williams, MLS; Spencer J. DesAutels, MLIS; Jing Su, MD, MS; Nunzia Bettinsoli Giuse, MD, MLS, FACMI, FMLA

Center for Knowledge Management Vanderbilt University Medical Center

BACKGROUND

METHODS

RESULTS

CONCLUSIONS

International Classification of Diseases (ICD)

- Standardized system for reporting health conditions and diseases
- Used by over 100 countries
- Maintained by the World Health Organization
- Undergoes periodic updates

Significance

Used for:

- Recording reasons people die
- Monitoring population health
- Detecting changes in disease patterns
- Guiding delivery of services
- Guiding allocation of resources
- Guiding financial decisions about health systems

François Boissier de Sauvages Nosologia Methodica

Nosologia Methodica 1763 Bertillon
Classification
of Causes of
Death
1893

1948 (WHO) 1949 (U.S.) 1975 (WHO) 1979 (U.S.)

ICD-9-CM 1979 (U.S.) 1990 (WHO) 1999 (U.S.)

Jacques Bertillon
Bertillon Classification
of Causes of Death

National Center for Health Statistics

ICD-9 and ICD-10 (Mortality) Comparison

Additions, modifications, and changes to some coding rules and rules for selecting underlying cause of death

	ICD-9	ICD-10
# Categories	5,000	8,000
# Volumes	2	3
Structure	4-digit numeric codes	4-digit alphanumeric codes

ICD-9 1975 (WHO) 1979 (U.S.)

ICD-9-CM 1979 (U.S.) ICD-10 1990 (WHO) 1999 (U.S.) ICD-10-CM; ICD-10-PCS 2015 (U.S.)

National Center for Health Statistics

ICD-9-CM and ICD-10-CM/PCS Comparison

	ICD-9-CM	ICD-10-CM	ICD-10-PCS
# Diagnosis codes	14,025 codes	69,823 codes	N/A
# Procedure codes	3,824 codes	N/A	71,924 codes
Diagnosis structure	3-5 characters; Character 1 (numeric or alpha); Characters 2-5 (numeric)	3-7 characters; Character 1 (alpha); Character 2 (numeric); Characters 3-7 (alpha or numeric)	N/A
Procedure structure	3-4 characters; numeric	N/A	7 characters; alpha or numeric

Example: Gout

ICD-9-CM	ICD-10-CM
Gouty arthropathy (274.0)	No direct conversion
Gouty nephropathy (274.1X)	No direct conversion
Gout with other specified manifestations (274.8X)	No direct conversion
Gout, unspecified (274.9)	Gout unspecified (M10.9)

ICD-10-CM Code Examples

# Characters	Code	Code	Description
Three characters (base code)	Category of the diagnosis	M1A	Chronic gout
Four characters	Etiology,	M1A.0	Idiopathic chronic gout
Five characters	anatomic site, severity,	M1A.07	Idiopathic chronic gout, ankle and foot
Six characters	or other clinical detail	M1A.072	Idiopathic chronic gout, left ankle and foot
Seven characters	Extension	M1A.0721	Idiopathic chronic gout, left ankle and foot, with tophus

Example: Knee Replacement

ICD-9-CM	ICD-10-PCS
81.54 – Total	OSRDOxx- Replacement of left knee joint
knee	
replacement	OSRCOxx – Replacement of right knee joint

ICD-10-PCS Code Structure:

Replacement of left knee joint with synthetic substitute, open approach (OSRDOJZ)

Character	Definition	Example
1	Name of section	0 = Medical and Surgical Section
2	Body system	S = Lower Joints
3	Root operation	R = Replacement
4	Body part	D = Knee Joint, Left
5	Approach	0 = Open
6	Device	J = Synthetic Substitute
7	Qualifier	Z = No Qualifier

National Clinical Modifications

Country	Date
Australian Modification (ICD-10-AM)	1998
Canadian Enhancement (ICD-10-CA)	2001
German Modification (ICD-10-GM)	2003-2004
Thai Modification (ICD-10-TM)	2007
Korean Modification (ICD-10-KM)	2008
U.S. Clinical Modification (ICD-10-CM)	2015
U.S. Procedure Coding System (ICD-10-PCS)	2015

Controversy over ICD-10-CM/PCS Implementation

- Concerns
 - Complexity of coding system
 - Costs
 - Reimbursement
 - Time for implementation
- Implementation Delays: Oct. 2013, 2014, 2015

Rand Analysis

Costs

- Training- Coders, code users, physicians
- Productivity losses- Coders, physicians
- System changes- Providers, Software vendors, Payers, CMS

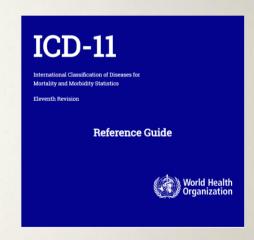
Benefits

- More-accurate payment for new procedures
- Fewer rejected claims
- Better understanding of new procedures
- Improved disease management

Projected Costs of ICD-10-CM/PCS Implementation

Practice size	Definition	2008 estimate	2014 estimate
Small	3 physicians; 2 administrative staff	\$83,290	\$56,639 - \$226,105
Medium	10 physicians, 1 full time coder, 6 administrative staff	\$285,195	\$213,364 - \$824,735
Large	100 physicians, 64 coding staff, 10 full time coders, 54 medical records staff	\$2,728,780	\$2,017,151 - \$8,018,364

ICD-11


June 2018: ICD-11 was released

May 2019: World Health Assembly agreed to adopt ICD-11

January 2022: Member States will begin reporting with ICD-11

Features of ICD-11:

- Updated to reflect medical, scientific, and technological advances
- 55,000 codes (ICD-10 14,400)
- Fully electronic (anticipated to facilitate its ease of implementation and use)

Knowledge Management:

Review the published and gray literature to better understand the impact of the transition to ICD-10 and ICD-10-CM/PCS, including the costs, benefits and challenges.

ICD-9 1975 (WHO) 1979 (U.S.)

ICD-9-CM 1979 (U.S.) ICD-10 1990 (WHO) 1999 (U.S.) ICD-10-CM; ICD-10-PCS 2015 (U.S.)

ICD-11 2022 (WHO)

Gray literature

"That which is produced on all levels of government, academics, business and industry in print and electronic formats, but which is not controlled by commercial publishers"

- 4th International Conference on Grey Literature 1999

"...literature that is not formally published in sources such as books or journal articles."

- Cochrane Handbook for Systematic Reviews of Interventions

Gray Literature Tiers (Adams et al., 2016)

Tier	Definition	Examples
1	Significant retrievability, credibility	Book, book chapters, government reports
2	Moderate retrievability, credibility	Annual reports, news articles, company publications
3	Low retrievability, credibility	Blogs, emails, tweets, letters

Selecting a Review Type

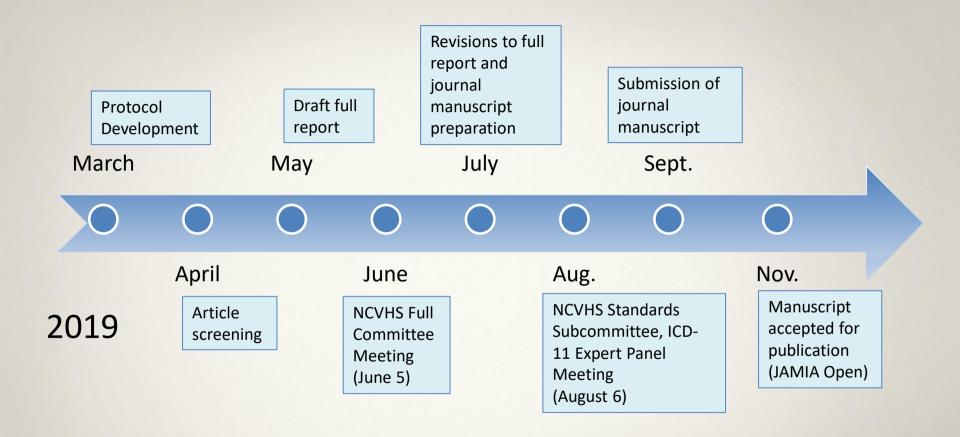
COMMENTARY

DOI: dx.doi.org/10.5195/imla.2019.707

Why equating all evidence searches to systematic reviews defies their role in information seeking

Zachary E. Fox, MSIS; Annette M. Williams, MLS; Mallory N. Blasingame, MA; Taneya Y. Koonce, MSLS, MPH; Sheila V. Kusnoor, PhD; Jing Su, MD, MS; Patricia Lee, MLS; Marcia I. Epelibaum, MA; Helen M. Naylor, MS; Spencer J. DeSautels, MIS; Elizabeth T. Frakes, MSIS; Nunzia Bettinsoil Gluse, MD, MLS, FACMI, FMLA

See end of article for authors' affiliations.


All too often the quality and rigor of topic investigations is inaccurately conveyed to information professionals, resulting in a mischaracterization of the research, which, if left unchecked and published, may in turn mislead potential readers. Accurately understanding and categorizing the types of topic investigation

Topic: Review the published and gray literature on the impact of the transition to ICD-10 and ICD-10-CM/PCS, including the costs, benefits and challenges

Category	Systematic Review	Comprehensive Literature Review
Scope	Narrow	Unspecified
Timeline	12-18 months	Rapid
Protocol	Required	Not required
Systematic Database Searching	Required	Typically conducted
Dual reviewer screening of articles	Required	Not required
Strength of the Evidence	Required	Not required

Fox ZE, Williams AM, Blasingame MN, Koonce TY, Kusnoor SV, Su J, Lee P, Epelbaum MI, Naylor HN, DesAutels SJ, Frakes ET, Giuse NB. Why Equating All Evidence Searches to Systematic Reviews Defies Their Role in Information Seeking. J Med Libr Assoc. Vol 107, No 4 (2019). http://imla.pitt.edu/ojs/jmla/article/view/707

Kusnoor SV, Blasingame MN, Williams AM, DesAutels SJ, Su J, Giuse NB. A Narrative Review of the Impact of the Transition to ICD-10 and ICD-10-CM/PCS. Accepted for publication in JAMIA Open.

Methods

- PubMed, Web of Science, Business Source Complete
 Government, association, and news websites
 Google search for white papers and presentations
 Hand-search references

- Screen Address transition impact
 English
 Single reviewer

PubMed:

((("International Classification of Diseases"[mh] OR "International Classification of Diseases"[tiab]) AND ("10"[tiab] OR tenth[tiab] OR tenth[tiab] OR "version 10"[tiab] OR "tenth revision"[tiab] OR "10th revision"[tiab]) OR ICD10[tiab] OR ICD10[tiab] OR ICD10[tiab] OR ICD10-M[tiab] OR ICD10-M[tiab] OR ICD10-M[tiab] OR ICD10-M[tiab] OR ICD10-PCS[tiab] OR ICD10-PCS[tiab] AND (change[tiab] OR conversion[tiab] OR converting[tiab] OR converting[tiab] OR converting[tiab] OR converting[tiab] OR migrations[tiab] OR migrations[tiab] OR migrations[tiab] OR migrations[tiab] OR migrations[tiab] OR rollout[tiab] OR switch[tiab] OR switch[tiab] OR witching[tiab] OR translations[tiab] OR "Cost Control"[mh] OR "Cost Control"[mh] OR "Cost and Cost Analysis"[mh] OR "Data Accuracy"[mh] OR "delivery of health care"[mh] OR "Diffusion of Innovation"[mh] OR "disease management"[tiab] OR "fraudulent claims"[tiab] OR "Health Care Costs"[mh] OR "Health Expenditures"[mh] OR "Health Information Interoperability"[mh] OR "insurance claim review"[mh] OR "Insurance, Health, Reimbursement"[mh] OR "lessons learned"[tiab] OR "morbidity/statistics and numerical data"[mh] OR "morbidity/trends"[mh] OR "Personnel Management"[mh] OR "Population Surveillance"[mh] OR "Quality Indicators, Health Care"[mh] OR "quality of health care"[mh] OR "insurance claim review data[tiab] OR benefits[tiab] OR discontinuity[tiab] OR consequence[tiab] OR consequence[tiab] OR consequence[tiab] OR consequence[tiab] OR migrations[tiab] OR migrations[tiab] OR payments[tiab] OR financial[tiab] OR payments[tiab] OR payments[tiab] OR financial[tiab] OR problems[tiab] OR problems[tiab] OR problems[tiab] OR migrations[tiab] OR migrations[tiab] OR migrations[tiab] OR migrations[tiab] OR mi

Web of Science:

TI=(((("International Classification of Diseases" OR ICD) NEAR (10 OR ten OR tenth OR 10th OR "version 10" OR "10th revision" OR "tenth revision")) OR ICD10 OR ICD10 OR ICD10-CM OR ICD10-CM OR ICD10-CM OR ICD10-CM OR ICD10-CM OR ICD10-CM OR ICD10-PCS OR ICD10-PCS)) AND TS=((change OR conversion OR convert OR converted OR converting OR crosswalk OR crosswalks OR implementation OR implementing OR map OR mapped OR maps OR mapping OR migration OR migrations OR rollout OR switch OR switched OR switching OR transition OR transitioning OR translating OR translation OR translations) AND ("change management" OR cost OR costs OR accuracy OR delivery OR innovation OR diffusion OR "disease management" OR fraudulent OR expenditures OR interoperability OR "claim reporting" OR "claim review" OR reimbursement OR "lessons learned" OR morbidity OR mortality OR surveillance OR quality OR rejected OR rejection OR rejections OR "system change" OR "system changes" OR time OR workforce OR "administrative data" OR advantages OR align OR alignment OR benefitial OR benefits OR burnout OR challenge OR challenges OR comparability OR concordance OR cons OR consequence OR discontinuities OR discontinuity OR economics OR efficiency OR error OR errors OR financial OR harms OR implication OR implications OR issues OR limitation OR limitations OR payment OR payments OR personnel OR problem OR problems OR productivity OR pros OR training OR validation OR "case mix" OR "case mixes" OR casemixes OR "diagnosis-related groups" OR "diagnosis-related groups" OR "diagnosis related groups"))

Business Source:

TI ((("International Classification of Diseases" OR ICD) AND (10 OR ten OR tenth OR 10th OR "version 10" OR "10th revision")) OR ICD10 OR ICD10 OR ICD10CM OR ICD10-CM OR ICD10-CM OR ICD10-CM OR ICD10-CM OR ICD10-CM OR ICD10-CM OR ICD10-PCS OR ICD10-PCS OR ICD10-PCS) AND TI (change OR convertion OR converted OR converting OR crosswalks OR implementation OR implementing OR map OR mapped OR maps OR mapping OR migration OR rollout OR switch OR switched OR switching OR transitioned OR transitioning OR translation OR translations)

_	U		ΕI	N	ı	L	Η
C	U	Τ	C	O	Ν	1	E
			0	F			
	N	Τ	Ε	R	Ε	S	٦

#	Outcomes	Definition		
1	Training	Costs of training coders, code users (such as employees of payer organizations), and physicians ¹		
2	Productivity	Impact on productivity of coders and clinicians (time required to code; need for physician input on coding) $^{\rm 1}$		
3	Staffing	Impact on staffing needs due to changes in productivity ²		
4	System changes	Costs due to changes in billing and administrative systems to handle the new codes, software changes, and testing system changes ^{1,3}		
5	Reimbursement	Impact of the ICD-10-CM & ICD-10-PCS code sets on DRG grouper logic and prospective payment calculation; accuracy of payments for new procedures; miscoded, rejected, and improper reimbursement claims ^{1,2}		
6	Coding accuracy	Impact on coding errors or level of coding detail/specificity ⁴		
7	Mapping between ICD-9 and ICD-10	Complexities of mappings between the two versions ⁵		
8	Disease surveillance/ management	Ability to identify patients in need of disease management and to provide tailored disease management programs; ability to track outcomes of care and compare data over time; tracking of emergent diseases ¹		
9	Other	Articles that still address the impact of ICD-10, ICD-10-CM, or ICD-10-PCS implementation, but do not address the categories listed above		

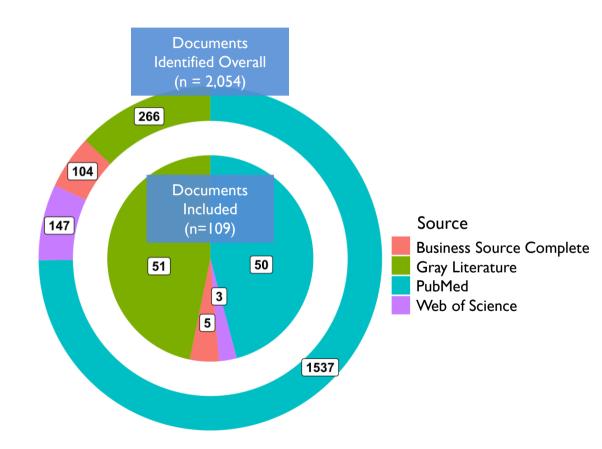
¹Libicki M, Brahmakulam I. The Costs and Benefits of Moving to the ICD-10 Code Sets. Rand Science and Technology Technical Report prepared for the Department of Health and Human Services, March 2004.

²Stanfill MH, Hsieh KL, Beal K, Fenton SH. Preparing for ICD-10-CM/PCS implementation: impact on productivity and quality. Perspect Health Inf Manag. 2014 Jul 1;11:1f.

³Workgroup for Electronic Data Interchange (WEDI) Strategic National Implementation Process ICD-10 Workgroup - Testing Subworkgroup. Testing: lessons learned from ICD-10 [Internet]. Reston (VA): WEDI; 2016 Apr 29

⁴Foley, Margaret M. DRG grouping and ICD-10-CM/PCS. J AHIMA. 2015 Jul;86(7:56-59.

^{*}Holey, Margaret M. DRG grouping and ICD-10-CM/PCS. J AHIMA. 2015 JU;86(7:56-59. SButler R. The ICD-10 General Equivalence Mappings. Bridging the translation gap from ICD-9. J AHIMA. 2007 Oct;78(9):84-5.


Identified 2,054 documents total

Included 109 documents after screening according to eligibility criteria

- 51 documents- Gray literature
- 58 documents- PubMed,
 Web of Science, or Business
 Source Complete

Classified 78 key reports

Document Identification and Selection

1. Morbidity surveillance	24	23 (96%)	N/A	1 (4%)
2. Reimbursement	16	16 (100%)	N/A	0 (0%)
3. Productivity	13	11 (85%)	0 (0%)	2 (15%)
4. Mortality surveillance	13	N/A	6 (46%)	7 (54%)
5. Coding accuracy	12	8 (67%)	0 (0%)	4 (33%)
6. Costs	7	7 (100%)	0 (0%)	0 (0%)
7. Mapping between versions	4	3 (75%)	0 (0%)	1 (25%)

Total

Reports

N

U.S. ICD-10-

CM/PCS

n (%)

2 (100%)

U.S. ICD-10

n (%)

N/A

International

n (%)

0 (0%)

0 (0%)

1 (100%)

VANDERBILT WUNIVERSITY MEDICAL CENTER

8. Patient care

9. Staffing

Impact area

0 (0%) Characteristics of Key Reports

AUSTRALIA

Phased implementation beginning in 1998

Training & productivity:

Anecdotal report (Innes et al., 2000):

- 2 year lead time was insufficient
- Minimum of 12 weeks to adjust to the new system.

Canada

Phased implementation beginning in 2001

Productivity impact:

Humber River Regional Hospital (605 beds; Johnson 2004)

- Initial decrease in coding productivity
- Observed improved productivity at 3-6 months post-implementation
- At 1 year, productivity levels were still not back to pre-ICD-10 levels

Coding accuracy impact:

Reviewed 4,008 charts from four teaching hospitals (Quan et al., 2008)

- Used dual coded database: ICD-10-Canadian Enhancement (ICD-10-CA); ICD-9-CM
- Assessed presence or absence of 32 conditions and assessed agreement between ICD-9-CM or ICD-10-CA data and chart data
- Calculated sensitivity and positive predictive value of ICD-9-CM and ICD-10-CA

ICD-10 Conversion Impact: Mortality Surveillance

Compared ICD-9 vs. ICD-10 using U.S. death certificates (1996):

- Discontinuities in cause-of-death trends
- Impacted rankings of top causes of death

Rank	ICD-9	ICD-10
6	Pneumonia and influenza	Diabetes mellitus
7	Diabetes mellitus	Influenza and pneumonia
8	HIV infection	Alzheimer's disease
9	Suicide	HIV disease
10	Chronic liver disease and cirrhosis	Intentional self-harm (suicide)

Survey Studies Addressing the Impact of the ICD-10-CM/PCS Implementation		6	ing	Productivity	ing	em changes	eimbursement	Coding accuracy	Conversion costs	atient care
Reference	Population (N)	Survey dates	Training	Proc	Staffing	Syst	Reim	Cod	Con	Pati
Health Care Collector, 2016	Change Healthcare clients (Not reported)	Nov. 2015		Χ						
Navicure, 2016	Physician practices (N=360)	Dec. 2015	Χ	Χ		Χ	Χ		Χ	
Healthcare Billing and Management Association (Louie, 2016)	Billing companies (N=38)	Feb. 2016		Χ	Χ	X	Χ	Χ		
Workgroup for Electronic Data Interchange, 2016	Respondents from vendor/clearinghouse, health plans, providers (N=66)	March 2016		Χ		X			Χ	
The Physicians Foundation, 2016	Physicians (N=17,236)	April-June 2016		Χ			Χ			Х
Rudman et al., 2016	Coding professionals (N=156)	June 2016		Χ				Χ		

Morbidity surveillance- impact for some health outcomes

Mainor et al., 2018

- Evaluated inpatient Medicare data from 2012-2015
- Observed sudden changes in the frequencies of certain diseases in the fourth quarter of 2015
- Range of discontinuities: -8.9% (cardiac arrhythmias) to +10.9% (psychoses)

- 1. Morbidity surveillance- impact for some health outcomes
- 2. Reimbursement- varied; some reported little impact

Impact on claims rejections or denials – mixed (4 retrospective studies; 3 surveys)

Two survey studies, >50% of respondents reported minimal/no impact on revenue

(Navicure, 2016; The Physicians Foundation, 2016)

Retrospective study of an ophthalmology practice found no impact on overall revenue based on a comparison of the period 12 months before and after ICD-10-CM/PCS conversion (Hellman et al., 2018)

- 1. Morbidity surveillance- impact for some health outcomes
- 2. Reimbursement- varied; some reported little impact
- 3. Productivity- initial loss; recovery

Physician's Foundation 2016 biennial survey (N=17,236) found that ~43% of respondents reported that ICD-10 detracted from efficiency, and 6% reported that it improved efficiency.

- 1. Morbidity surveillance- impact for some health outcomes
- 2. Reimbursement- varied; some reported little impact
- 3. Productivity- initial loss; recovery
- 4. Coding accuracy- insufficient data

- 1. Morbidity surveillance- impact for some health outcomes
- 2. Reimbursement- varied; some reported little impact
- 3. Productivity- initial loss; recovery
- 4. Coding accuracy- insufficient data
- 5. Cost- varied; delays increased costs

Costs for small practices (276 small practices; Blanchette et al., 2006)

- Dec. 2014 Jan. 2015
- Average costs: \$8,168 per practice

Navicure survey study (360 healthcare organizations; Navicure 2015)

- Dec. 2015
- Reports of costs ranged from none to >\$200,000

- 1. Morbidity surveillance- impact for some health outcomes
- 2. Reimbursement- varied; some reported little impact
- 3. Productivity- initial loss; recovery
- 4. Coding accuracy- insufficient data
- 5. Cost- varied; delays increased costs
- 6. Mapping- many codes lacked straightforward mapping

ICD-9-CM to ICD-10-CM (Boyd et al., 2013)

- 36% convoluted
- 63% simple
- 1% no mapping

ICD-9-CM-Vol3 to ICD-10-PCS (Boyd et al., 2018)

- 55% convoluted
- 40% simple
- 5% no mapping

- 1. Morbidity surveillance- impact for some health outcomes
- 2. Reimbursement- varied; some reported little impact
- 3. Productivity- initial loss; recovery
- 4. Coding accuracy- insufficient data
- 5. Cost-varied; delays increased costs
- 6. Mapping- many codes lacked straightforward mapping
- 7. Patient care- negative impact

Physician's Foundation 2016 Survey (N=17,236 physicians)

 Nearly 30% reported it detracted from patient care Physician social media network SERMO Nov. 2015 poll (N=1,249 physicians):

 Nearly 2/3 indicated it took time away from patient care

- 1. Morbidity surveillance- impact for some health outcomes
- 2. Reimbursement- varied; some reported little impact
- 3. Productivity- initial loss; recovery
- 4. Coding accuracy- insufficient data
- 5. Cost-varied; delays increased costs
- 6. Mapping- many codes lacked straightforward mapping
- 7. Patient care- negative impact
- 8. Staffing-insufficient data

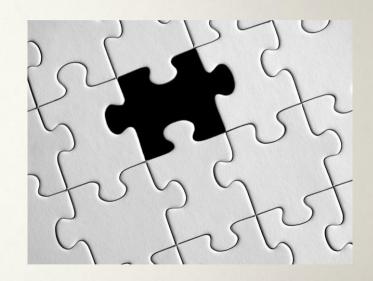
Alabama Hospital Survey (43 responding organizations)

- Dec. 2011- Feb. 2012
- 35% planned to hire more coders
- 18% planned to increase hours for coding staff

- Morbidity surveillance- impact for some health outcomes
- 2. Reimbursement- varied; some reported little impact
- 3. Productivity- initial loss; recovery
- 4. Coding accuracy- insufficient data
- 5. Cost- varied; delays increased costs
- 6. Mapping- many codes lacked straightforward mapping
- 7. Patient care- negative impact
- 8. Staffing-insufficient data

Evidence:

Non peer-reviewed literature Survey studies Retrospective reviews


Meta-analysis would not be feasible

No prospective studies

Knowledge Gaps

- Costs for organizations of various sizes
- Impact on staffing
- Impact on coding accuracy
- How patient care was impacted
- Extent of disruptions in morbidity and mortality surveillance

Conclusion

- Significant gaps in the literature
- Opportunities for future research and knowledge sharing
- Much of the data was qualitative, except morbidity/mortality surveillance
- Need for better reporting of data

Acknowledgements

Center for Knowledge Management (CKM)

Mallory N. Blasingame, MA
Information Scientist

Annette M. Williams, MLS

Senior Information Scientist

Spencer J. DesAutels, MLIS
Information Scientist

Jing Su, MD, MS
Information Scientist

Led by:

Nunzia Bettinsoli Giuse, MD, MLS, FACMI,

FMLA

Vice President for Knowledge Management
Professor of Biomedical Informatics, Medicine

Director, Center for Knowledge Management

Strategy and Innovation

Vanderbilt University Medical Center

National Committee On Vital and Health Statistics (NCVHS)

Chair:

NCVHS Members and Expert Panelists

June and August 2019 NCVHS Meetings

William W. Stead, MD

Chief Strategy Officer Professor of Biomedical Informatics Professor of Medicine

Vanderbilt University Medical Center

